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ABSTRACT

The Wyngaard and LeMone (1980) model of interfacial

turbulence structure functions (temperature, CT2 , and water

vapor, CQ 2 ) in an entraining mixed-layer is analyzed. The

model indicates that in the interfacial region (Z Z Zi ) CX
2

is proportional to (AX)2 Zi-2/3 8v*/AGv where

X = T or Q, AX is the jump in X across the interface, Zi is the

height of the interface, and 8v* is the convective mixed-layer

scaling parameter for temperature. Although based on a number of

assumptions (referred to as the "quasi-steady" approximation), the

model is found to have more general application. A theoretical

analysis indicated that the model might not apply where A~v is

large (on the order of 10 K), particularly for CT2 . A

comparison against 23 aircraft profile measurements revealed that

the model agreed within a factor of three.
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I INTRODUCTION

. This report is a theoretical and experimental analysis of a

model (Wy a-rd -- d L*tMone, -1-used to calculate the refractive

index structure function parameter, Cn2 at the interfacial

region at the top of an entraining,,turbulent mixed layer.

Cn 2 is related to the micrometeorological structure functions
for temperature, CT, humidity, and T-Q covariance,

- The mixed layer interfacial region is important for EM

propagation because Cn 2 is greatly increased by large T and

fluctuations due to the entrainment of warm, dry air from the

nonturbulent atmosphere above the mixed layer.

Assuming that the rate of entrainment is in equilibrium with

the free tropospheric virtual potential temperature (buoyancy)

lapse rate, the model indicates that CX2 is proportional to

(AX) 2 eV, Zi- 2/3 /AEv where X is T or Q, AX the jump

at the interface, Zi the height of the Doundary layer and

ev. the convective temperature mixed layer scaling parameter.

. The theoretical basis of this model is examined and four data sets

from the NPS aircraft measurements program are used to test the

model.

p f.
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*.- II THEORY

A. Background

The structure function parameters for temperature, CT2,

and specific humidity, CQ 2 , are to be evaluated in the

inversion region by averaging between heights Z = ho and

Z = h 2 (see Fig. 1). The complete theory was developed by

Wyngaard and LeMone (1980), hereafter referred to as WL, so only a

summary of the derivation will be presented in this report. In a

few instances WL's work will be expanded to make certain

assumptions and manipulations more explicit..

The height ho is defined as the top of the mixed layer
where w = 0. At h2 both fluxes and flux divergences are

equal to zero. The average structure functions are

<CT 2 > = Ah-f CT 2 dZ (la)

2

<CQ2= Ah- 10 CQ2 dZ (lb)

where Ah = h2 - ho and the 0, 2 on the integral denotes 'no, h2 .

The average structure functions are related to their

respective dissipation rates by the Corrsin equation

<CT 2> 1.6<e>l/3 <X (2a)

[- •= 1.6<E>-i/ 3 <k> (2b)

2
"V.
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where e is the rate of dissipation of turbulent kinetic energy, X

and XQ are the scalar dissipation rates (the factor 1.6 implies

X is the rate of dissipation of temperature variance 92).

B. Evaluation of <X>

For the moment, the development will be confined to the

specific humidity (Q). The dissipation rate is calculated from

the scalar variance budget equation (Q denotes mean while q

denotes fluctuating specific humidity; later in the paper q will

denote mixing ratio, Q/p).

dv/dt + Wdv/dZ + d(wq)/dZ + 2 p; d(Q/p)/dZ - (3)

where v = W is the mean vertical velocity (subsidence) and p

is the density of air. Integrating this equation from ho to

h 2 , as in Eq. 1, yields

<(XQ> > - <TQ> -<PQ> (4)

where D is the first two terms in Eq. 3, T (transport) the third

and P (gradient production) the fourth. Assuming "quasi-steady"

conditions, WL show that <DQ> and <TQ> are negligible compared

to <PQ>; therefore

<XQ> -<PQ> (5)

3



At this point the generalized inversion structure mcodel

(Deardorff, 1979) is introduced

Q =0 + AQ f(Z); ho<Z<h 2  (6a)

dQ/dZ AQ df/dZ (6b)

where f(Z) describes the shape of the Q profile in the inversion

region (assumed to be the same for Q and T) with f(h.) = 0 and

f(h2) 1 , Q0 is the mixed layer value and A0 the jump in Q

across the inversion. Substituting Eq. 6b into Eq. 5 and

integrating by parts one obtains

_<P >Ab 2 AQf~ d(wq)/dZ fdZ (7)

The mean Q continuity equation

-d(wq)/dZ =dQ/dt + 'A dQ/dZ (8)

is used in Eq. 7 t~o obtain

2 r2[-<PQ>Ah =-2AIQ /do/dt fdZ-" 2AQ WdO/dZ" dZ ()

The time derivative of Eq. 6a

dQ/dt =d0 0 /dt + f dAQ/dt (10)



and Eq. 6b can be substituted into Eq. la. First the

"quasi-steady" assumption is invoked, setting the following

conditions

dAQ/dt - 0 (11a)

dAOv/dt = 0 (llb)

dho/dt = 0 (11c)

dAh/dt = 0 (lid)

However, since

dho/dt = + Weo (12)

then Eq. llc implies Weo = -WO . Assuming constant

divergence

W = WO Z/h o  (13a)

dW/dZ Wo/h o  (13b)

W2 = (1 + a) W o  (13c)

where a = Ah/h o is the normalized thickness of the interfacial

region. Employing these relations in Eq. 9 and doing the second

integral by parts gives

-<PQ>Ah = -2AQ hYQ dQo/dt + (AQ) 2Weo(l+a-LZrC) (14)

where the interfacial functions YQ and ZQ are

ai



YQ = 1h- o f dZ (15a)

Z= Ah-f f2 dZ (15b)

The time derivative term in Eq. 14 is eliminated by

integrating the conservation equation (Eq. 10) from ho to h2

AhdQo/dt - WeO AQ(l + yQ) = wqO  (16)

which is substituted into Eq. 14 to obtain (WL Eq. 42)

-<PQ>Ah = -2AQYQ wq + (AQ) 2Weo[-2YQ(1+a-aYQ)+(l+a-azQ)]  (17)

Later in their paper, WL use the equation

-AQ Weo (1 + w- YQ) = Wqo (18)

which, in view of Eq. 14, obviously implies dQo/dt = 0. Since

* . WL have already required that dAQ/dt = 0, this solution appears to

be quite restrictive. If Eq. 18 is used in Eq. 17 then

-<PQ>Ah =(AQ)2 eo (1 + a - aZQ) (19)

Despite the simplicity of Eq. 19, WL prefer to keep the 7

term separate in their development. The primary reason for this

is to simplify the analagous development for ev since

Wvo = 0. Therefore, WL now employ the "quasi-steady"

entrainment formula



W =0.8 W* Si1/(l+g) (20)eo

where

=g'92 ho/W*T (21)

with r82 =dev/dZ at Z = h2 and W* is the convective

scaling velocity (Zi =h 0 /0.8)

=* g wOv5  Zi/T (22)

and "s" denotes the surface value.

Rather than make an explicit substitution for W~ at this

point, one could keep Weo as a variable, giving

<XQ> - -2AQ YO ;7-/(aho) + (AQ)2 W eo(l+ct)SFQ/ho (23)

where

FQ - C-2YQ (l+ct-ctY) + (l+a-aZQ)3/(a(l+I)S) (24)

Using the WL solutions obtained for Eq. 24 (and Y0  1/2)

FQ -(6R)-l (25)

then

<XQ> =A w q', Y0 /(ah.) + (AQ)2Weo(l+a)S/(6Rho) (26)

Where R -g AGv ho/(W*2T) (27)

The final result is obtained by substituting for Wo in Eq.

26. First the ev continuity equations at ho and at h2 are



combined with the ho to h2 integral form similar to Eq. 16 to

produce the relation

d A~v/dt + !pjo Ah(l4-a)re2 - eoAV(+voQ (28)

Since WL assume dAev/dt 6v= 0,

aoFeaaQ) r2 h(1+a) (29)

Using Eq. 29 and Eq. 18 in Eq. 26, one obtains

a0) = (AQ) 2 Weo(1+a)S(l+6l1)/(hoR) (30)

Note that the first term in Eq. 26 (which was proportional to

;;o is six times as large as the second term (WL obtain 15/2

for this ratio because they use two separate formulae for Weo

which differ by a factor of 4/5, i.e. 6*5/4 =15/2).

The development for temperature is parallel until the 6v

equation analagous t~o Eq. 26 is reached. Since w8.v, 0, the

final result is

<Xe = A~) 2 (1+at)Wo S/(6Rh0 )(3)

<),Q 7(AO) 2 (+a)Weo S/(6Rho) (31b)

C. Structure Functions

The final step in this process is to specify that <E> is one



half the value typically found at Zi under convective conditions

<F>/ (0.2)1/3 w* Zi13(32)

Assuming the "quasi-steady" ent-rainment rate, the structure

functions become

=C2 3.9(AQ)2 ev*/(Zi2I3AEDv) (33a)

CCTv 2 > = .5AeV 9v*/zi 2 I3 (33b)

where Ov* = -6vs/w*. The virtual temperature structure

function is related to the temperature structure function,

CT 2 , by

<CT 2 > =2 Ti <CT2>/Aev (34)

where Ti is the function given by WL.

one point worth more discussion is the approximation

FQ = (6R)- 1 and the final forms of Eq. 31. Suppose the

results of Eq. 19 were used and a different function defined

<X> (AQ)2 Weo(l+at) S GO/ho (35a)

<X > = (Aev)2W~(~t ~h (35b)

where FQ remains as per Eq. 1.9 but



GQ Q) (Maa cZ)(.1ct (36)

Using Eq. 29 one can show

F0 - - 2Y0 /R (37)

Following the calculations WL have in their Appendix A, a,

F0 and GQare unique function of R/S (providing the mixed

layer gradient is zero). G0 is considerably less variable than

F0 . The following formula are reasonable approximations for

0.*1 cR1 S 10

ot= 0.96 R/S -0.11 (R/S)1.5 (3a

=Q (1 + 0.064 lR7S)R-l (38b)

Fa (I + 0.28 FR/S)R-1/6 (38c)

These formulae lead to slight modifications to the structure

function equations

<C 2 > =3.3 (AQ) 2 -)v*/(Zi 2 /3A0v)(3)

K <CTV> U .57 (A~v)ev*DT/Zi/ (39b)

where DT 1 1+ U.22 vi7S.



The equations for CO2 and CT2 can be written in

various general forms (now dropping the bracket notation)

CX2 /((AX) 2 DxEx) = 1.14 ev./(AevZi 2 / 3 ) (40)

or, without substituting explicitly for Weo and €

CX 2 /((AX) 2 DxEx) = 0.53(1+a) rWeo (41). 8~v e€I/

where DQ = 1, EQ 3, and

ET = Ti/Aev (42)

D. Discussion

It is of interest to ponder the significance of the various

"quasi-steady" assumptions (Eq. 11, 12, 13). Suppose we exhume

the originalcnservation equation integrals from Deardorff's (1979)

paper (his Eq. 18 and 21). Assuming only horizontal homogeneity

and constant divergence, the general equations become
.4

Ah dQo/dt + AhYQ dAQ/dt - AQ[(l - YQ) We2 + gQeo3 = Wqo (43a)

1Ah dOvo/dt + AhYQ dA0v/dt - Av[(l- YQ) We2 + yQ WeoJ - 0 (43b)

I. 1I



Thus Eq 16 and the ev analogue can be reproduced by requiring

We2 = (1 + a) Weo (44a)

dAQ/dt = dAv/dt = 0 (44b)

It. is not necessary to require We = -W, dho/dt = dh2 /dt -dth/dt - 0.

This explains why WL found excellent agreement with Aschurch data

where W = 0 and Wo 10 cm/s.

Similarly, the general forms for the dissipation integrals

are

-<PQ>Ah = -2Ah AQYadQo/dt- 2AhZQAQdAQ/dt

+(AQ) 2 [(l - ZQ) We2 + ZQWo] (45a)

S<Pe>Ah = 2AhAev (Y0
2 - ZQ) dAev /dt

+ (Aev) 2 E-2YQ[(l - YQ) We2 + YO Weo) (45b)

+ (1 - ZQ) We 2 + ZQ Weo]

which reduce to Eq 14 if the conditions of Eq 44 are met.

Since entrainment and surface flux tend to counteract each

other in the Q case, it seems quite reasonable to assume that the

dAQ/dt and dQo/dt terms are negligible in Eq 45a

-<PQ>Ah = (4)2 E(l - ZQ) We2 + ZQ Weo) (46)

Instead of making the assumption Eq 44a, suppose we simply assume

124, ** .



we 2 W eo = wovs/60v (47)

which is the standard cloud-free result from Lilly (1968) where

typically a - 0.2. Then one can easily show that

<CQ 2 ) = 3.3 (AQ) 2 8v*/(zi 2 / 3 Aev ) (48)

which is identical to the WL result as expressed in Eq. 39a1 In

other words, the combination of "quasi-steady" assumptions

, We2 - (1 + a)Weo and We2 - wvsr h ) are

equivalent to the assumptions of Eq. 47 even though they may imply

vastly different entrainment rates.

If one uses the assumptions of Eq. 47 and parallels the WL

development, then the equivalent to Eq. 18 is

Wqo - AQ Weo (49)

and the equilibrium condition form the ev equation is

Wvo = Weo (ahore - Aev) (50)

which, assuming Wvo = 0, gives

a - R/S (51)

The results for e v are also interesting oecause it is not

clear that the dOv/dt term should be negligible compared to the

b,"3



other terms in Eq 46 b. Suppose we let

-< A A + B (52)

Then the dAev/dt term is small if A/B is small (returning t~o the

'quasi-steady" format)

AB=h 0 (Y0
2 

-ZQ) dA~v/dt 6(R/S) (53)
Aev (1 + 01) Weo

Since -Q Qz -0.1, we can write

AB=-0.6 ho(R/S) dAOV/dt
(1 + as) Weo Aev

The magnitude of A/B can be examined by using the general

relation

dAOv/dt =-de 0 /dt + rewe2 (55)

and writing a simple entrainment formula (e.g. "quasi-steady')

We2 7avs/l(±eho) (6

The integral of the conservation equation from Z 0 to Z =ho gives



h0 ~vodt Wvs + WeoA v (57)

there fore

dA-. /dt = WeoA. v/ho (58)

using Eq. 54 we find

0.6
A/B - R/S (59)

A good example is the Aschurch data quoted by WL where Eq. 57

was shown to be applicable. Since R/S -0.3 for that data, A/B -

0.15 and dAdo/dt is negligible.

Certainly the conditions set by WL are consistent with

neglecting dAe v/dt. It is not clear how to identify conditions

where this assumption is invalid. Eq. 54 cannot provide much

guidance because it is based on solutions to Eq. 28 with

dAev/dt = 0. It is interesting that in the conditions where the

WL equations for "quasi-steady" entrainment are expected to

breakdown (AGv large, R/S >1) then the Lilly type relations give

t(he same results for CQ2 . If the d)v/dt terra becomes

L'

Cimprtan thoe aondtiiats teb WL formulaonitn wi

udesv/tima. te isitrsigthti h odiin hr h

WLeutosfr"us-tay nrimn r xetdt

." readow (~ v arg, /S i) he th Lilytyp reatonsgav15



III ATMOSPHERIC DATA

A. Measurement Techniques

The measurements were inade using a single engine Hellanca

Viking aircraft operated by Airborne Research Associates of

Weston, MA. The instrumentation and data processing have been

previously described in detail (Fairall et. al., 1980; Schacher

et. al., 1980) so only a brief summary is given here.

i) Mean temperature, T: platinum resistance sensor with

standard aircraft mount.

ii) Mean humidity, 0: cooled mirror dew cell.

iii) Mean windspeed, U: estimated at the surface from the

sea state and DMV navigational aid. The present LORAN system

was not available.

iv) Sea surface temperature, Is: Barnes PRT-5 IR

radiometer.

v) CT2 : microthermal senscrs (4.5 um dia. tungsten)

in the paired configuration.

vi) CQ 2 : Lyman-alpha fast humidiometers using the

inertial subrange filter method. Absolute calibration based

on comparison with a microwave refractometer.

vii) C: hot wire (4.5 Um dia. tungsten) constant

temperature anemometer. The inertial subrange filter method

was used.

B. Surface Fluxes and Turbulence Scaling Parameters

Surface fluxes were evaluated from aircraft measurements

using two methods: a) bulk aerodynamic and b) dissipation

(inertial subrange). The fluxes are defined in terms of the

:@ i6



following scaling parameters:

momentum: = -.pu* 2  (60a)

sensible heat: pCp w s = -pCp u*T* (60b)

moisture: pqws = -pu*q* (60c)

The momentum flux is also referred to as the Reynolds stress, T.

Note: the bulk method was not used overland.

1. Bulk aerodynamic method.

The exact details were described in a recent paper (Davidson

et al, 1981). Using Eq. 4a from that paper, one can relate the

values of some meteorological variable (temperature, moisture or

wind speed) at. the sea surfce, Xs , and at. some height Z in the

surface layer, Xz, to the scaling parameter, X*:

u= uzk[Xn (Z/Z 0 ) - u (Z/L)-I (61a)

.= (T z -T s ) $k[n (Z/ZoT) - T (Z/L)- 1  (61b)

q*= (qz - qs) $k EZfn (Z/ZoT) - TT (Z/L)]-  (61c)

where Z. and ZoT are roughness lengths, L is the Monin-Obukhov

length, S and k are constants, and Tu and 'Y are empirical

functions.



2. Dissipation method.

The dissipation method relies on semi-empirical relationships

of inertial subrange turbulence to surface-layer scaling

parameters (Fairall et al., 1980). The equations are

u,= E(Ek Z)/(Z/L)]1/3 (62a)

T= [z2/ 3 CT2/f(Z/L)]l/2 (62b)

Q*= [2/3 CQ 2 /(A f(Z/L)]I/ 2  (62c)

where E is the dissipation rate, ¢ and f are empirical functions,

and A is a constant. Because the structure-function parameters

CT 2 and CQ2 are related to the square of the scaling

parameter, a sign ambiguity exists. This can usually be

eliminated by examining the low-level height dependence of £,

CQ2 and CT2 because the functions and f have

characteristic profiles for stable and unstable conditions.

Both methods yield accuracies on the order of 10% for u*,
+0.02C for T, an+0.0.02 gim3 for Q* (note: q* = Q./Q).

f a

C. Data Sets

The data given in this report were octained in four field

programs:

i) Panama City (PC), 1978 (more detail available in

Fairall, 1979) over the Gulf of Mexico in Florida.

ii) White Sands (WS), 1979. Two profiles over the desert

under highly convective daytime conditions.
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iii) MAGAT (MG), 1980 (more detail available in Fairall,

1980) in the Monterey Bay area.

iv) Bahamas (BH), 1980. A series of profiles taken near

Andros Island in the late fall.

• ." The complete data sets were examined to remove profiles that

encountered boundary-layer clouds. A total of 23 profiles were

selected. Graphs of the mean and turbulence profiles for each

case are given in Appendix A. A summary of the basic scaling

parameters is given in Table 1.
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TABLE 1.

Meteorological data and surface scaling parameters
from the cloud free NPS data sets.

#* IsitelDatelTimelu. IT. lq. zi IAe, lAO I Ir I
-I I I I Im-K Igkg-l Ik I1K Igm-3I IKk-1II I I I I I I I

I .I PC I 11/26 1252 1 .40 I -.0821 -.16 I .851 1 1 -6.5 I .4 I 5.5 1
I 2 I PC I 11/261 1436 I .23 1 -. 0951 -.16 1 .901 .5 I -2.3 1 .1 I 5.3 1
1 3 I PC I 12/2 1 1405 1 .24 I -.14 I -.18 1 .231 4 I -.5 I .7 I 4.6 1
I 4 I PC I 12/101 1324 I .38 I -.35 I 0 1 .911 6 1 -1 1 .351 10 I

S_ 5 I PC 1 12/101 1410 I .32 1-.49 i-.49 1 .751 .3 I-1 I "151 11 I
1 6 1 PC 1 12/101 1523 1.341 -.481 -.48 1 .851 3 1-1.31 .251 11 I
I 7 I PC I 12/101 1637 1 .34 I -.49 I -.50 1 1.1 1 3 1 -3 1 .1 i 17.5 1
I 8 I PC I 12/lll 1021 I .28 i -.44 i -.43 1 .7 1 3 1 -1 I .5 i 9.5 I
I9 IPC 1 12/131 1154 1 .19 1 0.21. 1 -.47 1 .6 1 1.5 1 .2 1 .351 10 1
I 10 I PC I 12/131 1459 I .17 I -.20 I -.42 1 .5 I .5 I -2 I .4 I 11 I

1 1 1i I ws 1 10/171 1330 I .47 1 -.42 1 0 1 1.1 1 1.5 1 -2.5 1 .1 1 3.0 1
I 12 1 ws I 10/18 1330 1 .47 1 -.42 I 0 1 1.9 I 1.5 i -2.5 I .1 I 3.3 1

1 13 I MG I 4/301 1610 1 .28 1 -.07N -.11 I .361 6.5 1 -4.5 1 .351 9 I
L1 I MG 1 5/4 i 1024 1 .21 i -. 0851 -. 11 I .361 11 I -5.2 1 .4 I 10 I

1 15 1 MG 5/4 1 1201 I .30 I -. 0751 -.12 I .461 9 I -5.2 1 .5 1 15 I
-16 I MG 5/4 1 1244 I .30 1 -. 0751 -.12 I .541 9 I -5 1 .2 I 15 1
I 17 lMG 5 /7 1 1043 I .41 I -.04 1 -.05 1 .231 7 1-2 1 .5 I 9 I

0 I 18 I BH 1 12/121 1414 I .15 I -.16 1 -.27 J .5 I i 1 -2.5 ? I 5 I
1 19 I BH I 12/131 1,540 1 .33 I -. 30 1 -. 39 1 .651 0 I 0 1 ? I 4.8 1

I 20 I BH I 12/141 1330 1 .23 1 -. 17 I -. 27 1 .901 2.5 I -8.5 1 .151 6.3 1

_21 1 BH 1 2/151 1333 I .20 1 -.16 1 -.26 1 1.5 I 3.5 1 -9 1 .151 5.5 1

I 22 1 BH I 1.2/151 1.347 I .20 1 -. 16 I -. 26 1 1.5 I 3.5 i -9 _ .3 1 5.5 I
I 23 I BH 1 12/151 1637 I .14 -.14 -.25 1.1 I 1 -4.5 .4 I 6.3 I
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IV. RESULTS

A summary of the secondary scaling parameters used for the

NPS data set is given in Table 2. Also shown in Table 2 is a

comparison of the measured and model assumed values for E at the

inversion. With very few exceptions, the model assumption (Eq.

32) is very good. The entrainment velocities calculated from the

"quasi-steady" assumption used by WL (Eq. 20) and the more

conventional parameterization of Lilly (1968).

Weo/W* = 0.2 ev*/Aov (63)

are also calculated.

In Table 3 are the measured values of CT 2 and CQ2 at

the inversion plus their normalized forms

IX = Zi2/3 CX 2 /((AX) 2 DX FX) (64)

taken from Eq. 40. According to WL (Eq. 26), the theoretical

value is

I C = 1.14 Bv*/AOv (65)

which is the same for T and Q.

A direct comparison of measured and calculated values of

CT 2 and CQ 2 is given in Fig. 2. The model predicts the

measurements within a factor of three. The uncertainty is

slightly greater than the factor of two suggested by WL but
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Table 2.

Surface scaling (wvs and L), convective scaling
(W*, Oy* and ei ) and inversion scaling (R, S
and Weo) parameters. Two formulae are used to
estimate Weo: "steady" is Eq 20 and "Lilly" is Eq
64.

Iw# :W6 I L I W.I R I S IR/S I <ei>/ eo 6x*'

I Kms- 1l m Irms-11 I I I m2/3 s-1 1 c s-1  K I
I I I I I I measl calcl Steady] Lillyl I

I I .0441 -1251 1.1 I 331 1031 .321 .0631 .0661 .811 .8 .04 i
12 l .028 - 501 .931 161 1601 .1 1 .0961 .051 .65 1.1 1 .03 l

1 3 1 .0401 - 291 .671 6'A 181 3.7 1 .10 1 .0631 2.7 I .2 1 .06 l
1 4L 1 .13 1 - 341 1.6 1 701 1051 .67 .0741 .0951 1.3 1 .431 L081

5 1 .19 1 - 151 1.7 1 251 701 .361 .0731 .11 1 2.4 1 1.3 1.11 1
I 6 I .19 1 17 1.7 1 2A 901 .321 .0841 .11 1 2.0 1 1.3 .11j

I 7 I .20 - 161 1.9 I 301 1901 .161 .0711 .11 I 1.2 I 1.3 I .11 I

,8 I .14 -241 1.5 1 301 65 .461 .11 1 .0961 1.7 J .931 .0931
1 9 I .0561 - 101 1.0 I 291 821 .351 .0631 .0721 .8 I .741 .0561
!11 1 _.04 - 91 .921 101 1051 .101 .10 1 .0691 .751 1.9 1 .0531
I 11 I .20 I - 451 1.9 1 141 321 .441 .11 1 .11 1 6.6 I 2.7 i .11 I
I 12 I .20 I- 451 2.3 ! 1 11 .241 .11 1 .11 I 3.4 1 2.7 I .0871
1 13 .0271- 701 .651 1101 771 2.2 I .13 I .0561 .841 .080 .0421

1 14 1 .0221- 3 .6 I 1101 841 3.7 1 .0461 .0531 .591 .041 .0321
1 15 I .02 I -1201 .7 1 2501 170I 1.5 1 .08A .0511 .391 .0 .02A

I16 1 .02 1 -1201 .751 2801 1701 1.6 I .0461 .0511 .241 .4 "0271

, 17 I .02 I -3001 .5 I 2001 541 3.7 1 .0631 .0511 .891 .061 .04 1

I 18 1 .03 J -9.51 .791 261 631 .4 1 .0401 .0591 .961 6 I .03A
1 19 1 .12 1 - 271 1.3A 01 361 0 1 .10 I .0931 3.1 1 I .0881
1 20 I .0491 - 221 1.121 601 1341 .451 .0841 .0721 .9 1 .4 1 .04,4

I 21 1 .0391 - 171 1.241 1101 2651 .421 .0551 .0631 .40 .221 .0321

1 22 .0391 - 171 1.241 1101 2651 .421 .11 1 .0631 .45J .221 .0321

1 23 1 .0241 - 101 .951 401 2801 .141 .0480 .0631 .3 1 .48 .025j
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Table 3.

Measured values of the interfacial structure functions

(CT2 and CO2 ) and their resultant values for

IX = Zi 2/ 3 Cx2 i((AX) 2 DX FX)where XT
or 9 These are compared with theoretical values, Ic e
using the "steady" and "Lilly" entrainment values.

S <CT> <C > I Drp EPIl I ' I n I IC (Theory) I IT,,/IC I I/I C I

K m-2  (g 3 2 M Stead Lilly I I

I MEASI1 10 1 1 1 1 1
1 J .3 I 11.121 8.1 1.003 1 I .048 I .0481 .065 1

12 1 5.6 1 1 1.071 5. 1.396 1 I .068 I .11 I 5.7 1
13 1 5 I 11.421 .581 .0141 I .017 I .00131 .82 I
!4 I 12 I 11.181 .611 .0441 1 .015 i .005 1 2.9 1

" !s I n I 1 1.131 .731 .1351 I .042 I .o0231 3.1 i
16 I 5.7 I 11.121 .801 .0641 I .042 I .027 1 1.5 1
17 I 9 I 11.091 1.231 ._0791 I .042 I .0461 1.9 1
18 I 43 I 1I.1s .731 .45 I .035 I .019 1j13
19 I 6.1 I I 1.131 1.5 1 .12 I I .043 1 .040 1 2.8 1
I0 3.4 I 11.071 4.41.18 ! I .12 i .30 1 1.5 J

!].1. 9.2 I 1 1.51 1.8 1 .22 I I .084 I .034 1 2.6 1
112 3 li.iil 1.81.10 I I .066 I .0521 1.5 i
13 1 2.5 I 3.9 I 1.331 1 1 .00231 .00331 .0074 1 .00071 .31 1 .45 j

I14 11.3 I 2 1 1.421 .831 .000 .00121 .0038 1 .00031 .13 .33 j
I15 1 10 I 9.8 I 1.271 .901 .00631 .00721 .0037 1 .ooos 1.7 1 1.9 I
!16 1 2.8 1 25 I 1.291 .891 .00201 .022 1 .0035 .00061 .57 6.3 1

I 17 1 1.7 I 1.6 1 1.421 .691 .00131 .O050J .0065 I .00041 .20 1 .77 I
18 1 6.8 I 33 1 1.141 2.6 1 .15 I .11 I .U42 I .026 1 3.6 1 2.6 I

I19 .61 3.3 II I I I
120 1 2.7 1 16 I 1.161 3.6 1 .00931 .00691 .020 1 .009 1 .47 I .3. I
: 21 I 0 I 1.151 2.7 1 1 .038 1 .010 I .0042.1 1 3.8 I
I 22 16 1 1.1sl 2.71 1 .00871 .010 I .00421 I .87 I
123 1 55 1 1.081 5.0 1 1 .0971 _.029 I .0U461 I 3.3 I
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includes various measurement errors and uncertainties. Note that

the CQ 2 data has a greater range of values than CT2 . This

is consistent with the WL model. If we examine the function

H = Zi 2/3 CX 2 /(D x ev*) (66)

then

HT = FT AOV (67a)

HQ = (AQ)2 /AOv (67b)

A graph of HT and Ho is shown in Fig. 3 for a typical range of

ASv and AQ from the NPS data set. Note that HT varies roughly

from 2 to 9 while HQ varies from 4 to 72.

The entrainment parameterization was tested (Fig. 4) by

plotting measured values of IX(Eq. 65) against the model value

(Eq. 66) which is based on the entrainment formula given by WL

(Eq. 26). This plot gives a much higher correlation than a

similar graph (not shown) using the more traditional formula due

to Lilly (1968), Eq. 62, which gives

Ic' (Lilly) = 0.18 (l+ci)re Zi ev*/(Aev)2  (68)

This is not really significant because, when used in proper com-

bination with Eq. 48, the Lilly formulation also leads to Eq. 66.

In order to look for systematic errors, the ratios (RT and

RQ) of measured to model values of CT2 and CQ2 were

calculated and plotted against ,jov (Fig. 5). A simple

27I
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log-average yields RT = 1.15 and RQ = 1.3. Figure 5a weakly

suggests that the model underestimates CT2 (large RT ) when

.Av is small while it overestimates when AGv is large (the

CQ 2 data is too sparse to clear up this questlon). This could

be due to an error in the estimation of AGv and &Q (admittedly

rather subjective). An examination of Fig. 3 suggests that. a

reasonable adjustaent of AGv (several tenths K) will not. move

the data points substantially closer to the RT = 1 midline.

Another possibility is that. Eq. 20 tends to overestimate Weo

when Aev is large while underestimating for small AGv .

Given the considerable scatter in the results, the

uncertainties in the estimation of AEv and AQ from measured

profiles and the insensitivity of CT2 to A~v and AQ it is

suggested that a simplified formula for CT2 can be used for

application to radiosonde quality data. If one assumes (based in

Fig. 3) that HT 5, then

CT2  5 ev, zi-2/3 (69)

Based on the MPS data set this approximation appears to be at

least as accurate as the more complicated formula (Fig. 6).
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V CONCLUSIONS

The Wyngaard-LeMone inversion layer scaling has been examined

theoretically and tested against a data set obtained by NPS

investigators in cooperation with Airborne Research Associates.

The theoretical examination indicated the following:

i) The WL theory is more general than is implied by the

strict assumptions of the "quasi-steady" theory.

ii) The WL development can be simplified slightly, leading

to modest adjustments of the normalization constants.

iii) The steady state assumption that. dAQ/dt is negligible is

reasonable under most conditions. The assumption that dAdv/dt

is negligible may not be justified when R/S > 1.

The examination of the atmospheric data indicated the

following:

- i) The assumption that e at the inversion is proportional

to a fixed fraction of the surface buoyancy flux was quite

reasonable.

ii) The WL model predicted the measured value of CT2 and

CQ 2 to within a factor of three.

iii) Some evidence, though statistically weak, was found to

suggest the model overestimates the structure functions for large

L.Av (> 8K)) while it. underestimates for small AG v (< 2K). On

the other hand, this could be a manifestation of the Stein effect.

for comparison of data sets subject to error where small values

are usually overestimated and large quantities are usually

underestimated.
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Based on these results, it is obvious that a major weakness

of the model is its reliance on an entrainment formulation that is

too restrictive. The two extremes of the buoyancy jump (Aev)

may involve different entrainment regimes (e.g. encroachment,

convective instability or the Lilly formulation). It would also

be useful to include the effect of inversion windshear on We and

on the structure functions. Another area of investigation might

be stable surface layers. These may be very important for surface

optical propagation because CT 2 values are often sizeable and

Zi is usually small (on the order of 100m).
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APPENDIX A

This appendix contains graphs of mean (0v , q) and

turbulence (CT2 , CQ2 , e) profiles for each of 23 data

sets. The site designations are defined in Section III-C. The

.* abstraction of this data to obtain the relevant parameters (Tables

1, 2, 3 in the main text) is described in Section III.

3
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